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Recap from Last Time



  

Recap So Far
● A propositional variable is a variable that is either 

true or false.
● The propositional connectives are as follows:

 →    ∧    ⊤    ¬    ∨    ⊥    ↔ 

T
p q p → q
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Operator Precedence
● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬   
∧   
∨   
→   
↔   

● All operators are right-associative.
● We can use parentheses to disambiguate.

¬ binds to whatever
immediately follows it

∧ and ∨ bind
more tightly than →



  

Why All This Matters
● Suppose we want to prove the following 

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”   



  

Theorem: If x + y = 16, then x ≥ 8 or y ≥ 8.

Proof: We will prove the contrapositive, namely, that
if x < 8 and y < 8, then x + y ≠ 16.

 

Pick x and y where x < 8 and y < 8. We want to show
that x + y ≠ 16. To see this, note that

 

x + y < 8 + y
         < 8 + 8

= 16.
 

This means that x + y < 16, so x + y ≠ 16, which is
what we needed to show. ■



  

New Stuff!



  

First-Order Logic



  

What is First-Order Logic?
● First-order logic is a logical system for 

reasoning about properties of objects.
● Augments the logical connectives from 

propositional logic with
● predicates that describe properties of 

objects,
● functions that map objects to one another, 

and
● quantifiers that allow us to reason about 

multiple objects.



  

Some Examples



  

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)



  

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

These blue terms are called 
constant symbols. Unlike 
propositional variables, they 

refer to objects, not 
propositions.



  

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

The red things that look 
like function calls are called 
predicates. Predicates take 
objects as arguments and 
evaluate to true or false.



  

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

What remains are traditional propositional 
connectives. Because each predicate 
evaluates to true or false, we can 

connect the truth values of predicates 
using normal propositional connectives.



  

Reasoning about Objects
● To reason about objects, first-order logic uses 

predicates.
● Examples:

Cute(Quokka)    
ArgueIncessantly(Democrats, Republicans)  

● Applying a predicate to arguments produces a 
proposition, which is either true or false.

● Typically, when you’re working in FOL, you’ll 
have a list of predicates, what they stand for, and 
how many arguments they take. It’ll be given 
separately than the formulas you write.



  

First-Order Formulas
● Formulas in first-order logic can be constructed 

from predicates applied to objects:
Cute(a) → Quokka(a) ∨ Kitty(a) ∨ Puppy(a)

Succeeds(You) ↔ Practices(You)
x < 8 → x < 137

The less-than sign is 
just another predicate. 
Binary predicates are 
sometimes written in 

infix notation this way.

Numbers are not “built 
in” to first-order 

logic. They’re constant 
symbols just like “You” 

and “a” above.



  

Equality
● First-order logic is equipped with a special 

predicate = that says whether two objects are 
equal to one another.

● Equality is a part of first-order logic, just as → 
and ¬ are.

● Examples:
TomMarvoloRiddle = LordVoldemort

MorningStar = EveningStar
● Equality can only be applied to objects; to 

state that two propositions are equal, use ↔.



  

Let's see some more examples.



  

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧ 
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

These purple terms are 
functions. Functions take 

objects as input and 
produce objects as output.



  

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧ 
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))



  

Functions
● First-order logic allows functions that return 

objects associated with other objects.
● Examples:

ColorOf(Money)
MedianOf(x, y, z)

x + y
● As with predicates, functions can take in any 

number of arguments, but always return a single 
value.

● Functions evaluate to objects, not propositions.



  

Objects and Propositions
● When working in first-order logic, be careful 

to keep objects (actual things) and 
propositions (true or false) separate.

● You cannot apply connectives to objects:
        ⚠          Venus → TheSun                  ⚠

● You cannot apply functions to propositions:
 ⚠ StarOf(IsRed(Sun) ∧ IsGreen(Mars)) ⚠

● Ever get confused? Just ask! 



  

The Type-Checking Table

… operate on ... … and produce

Connectives
(↔, ∧, etc.) …

Predicates
(=, etc.) …

Functions …

propositions a proposition

a propositionobjects

objects an object



  

One last (and major) change



  

Some bear is curious.

∃b. (Bear(b) ∧ Curious(b))

∃ is the existential quantifier 
and says “there is a choice of 

b where the following is 
true.”



  

The Existential Quantifier
● A statement of the form

∃x. some-formula
is true when there exists a choice object 
where some-formula is true when that 
object is plugged in for x.

● Examples:
∃x. (Even(x) ∧ Prime(x))
∃x. (TallerThan(x, me) ∧ WeighsLessThan(x, me))
(∃w. Will(w)) → (∃x. Way(x))

● Note the two ways of applying the ∃!



  

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x) 
is true for some 
choice of x, this 

statement 
evaluates to true.



  

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x) is 
not true for any 
choice of x, this 

statement evaluates 
to false.



  

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


 

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this part of the 
statement true or 

false?



  

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this part of the 
statement true or 

false?



  

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this overall 
statement true or 

false?



  ∃x. Smiling(x)

Fun with Edge Cases

Existentially-quantified 
statements are false in an 

empty world, since nothing 
exists, period!



  

Some Technical Details



  

Variables and Quantifiers
● Each quantifier has two parts:

● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to 
the statement being quantified.

(∃x. Loves(You, x)) ∧ (∃y. Loves(y, You))

The variable x 
just lives here.

The variable y 
just lives here.



  

Variables and Quantifiers
● Each quantifier has two parts:

● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to 
the statement being quantified.

(∃x. Loves(You, x)) ∧ (∃x. Loves(x, You))

The variable x 
just lives here.

A different variable, 
also named x, just 

lives here.



  

Operator Precedence (Again)
● When writing out a formula in first-order logic, 

quantifiers have precedence just below ¬.
● The statement

∃x. P(x) ∧ R(x) ∧ Q(x)
is parsed like this:

        ⚠ (∃x. P(x))  ∧  (R(x) ∧ Q(x))        ⚠
● This is syntactically invalid because the variable x is 

out of scope in the back half of the formula.
● To ensure that x is properly quantified, explicitly put 

parentheses around the region you want to quantify:
∃x. (P(x) ∧ R(x) ∧ Q(x))



  

“For any natural number n,
n is even if and only if n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2))) 

 ∀ is the universal quantifier 
and says “for all choices of n, 

the following is true.”



  

The Universal Quantifier
● A statement of the form

∀x. some-formula
is true when, for every choice of x, the statement 
some-formula is true when x is plugged into it.

● Examples:
∀p. (Puppy(p) → Cute(p))
∀a. (EatsPlants(a) ∨ EatsAnimals(a))
Tallest(SultanKösen) →

∀x. (SultanKösen ≠ x → ShorterThan(x, SultanKösen))



  

The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x) 
is true for every 
choice of x, this 

statement 
evaluates to true.



  

The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x) is 
false for this choice 

x, this statement 
evaluates to false.



  

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this part of the 
statement true or 

false?



  

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this part of the 
statement true or 

false?



  

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this overall 
statement true or 

false in this 
scenario?



  ∀x. Smiling(x)

Fun with Edge Cases

Universally-quantified 
statements are said to be 
vacuously true in empty 

worlds.



  

Translating into First-Order Logic



  

Translating Into Logic
● First-order logic is an excellent tool for 

manipulating definitions and theorems to 
learn more about them.

● Need to take a negation? Translate your 
statement into FOL, negate it, then 
translate it back.

● Want to prove something by contrapositive? 
Translate your implication into FOL, take 
the contrapositive, then translate it back.



  

Translating Into Logic
● When translating from English into first-

order logic, we recommend that you
think of first-order logic as a 
mathematical programming 

language.
● Your goal is to learn how to combine 

basic concepts (quantifiers, connectives, 
etc.) together in ways that say what you 
mean.



  

Using the predicates

   - Smiling(x), which states that x is smiling, and
   - WearingHat(x), which states that x is wearing a hat,

write a formula in first-order logic that says

some smiling person wears a hat.

How would you represent this in first-order logic?

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

Using the predicates

   - Smiling(x), which states that x is smiling, and
   - WearingHat(x), which states that x is wearing a hat,

write a formula in first-order logic that says

some smiling person wears a hat.

Which of the following are correct translations?

(A) ∃x. Smiling(Person(x))
(B) ∃x. (Smiling(x)  =  WearingHat(x))
(C) ∃x. (Smiling(x)  ∧  WearingHat(x))
(D) ∃x. (Smiling(x)  →  WearingHat(x))

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

∃x. (Smiling(x) ∧ WearingHat(x))
∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” False

False

True



  

“Some P is a Q”
translates as

∃x. (P(x) ∧ Q(x))



  

Useful Intuition: 
  

Existentially-quantified statements are 
false unless there's a positive example.

∃x. (P(x) ∧ Q(x))

If x is an example, it must 
have property P on top of 

property Q.



  

Using the predicates

   - Smiling(x), which states that x is smiling, and
   - WearingHat(x), which states that x is wearing a hat,

write a sentence in first-order logic that says

every smiling person wears a hat.

Which of the following are correct translations?

(A) ∀x. (Smiling(x)  ∧   WearingHat(x))
(B) ∀x. (Smiling(x)  →   WearingHat(x))

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

∀x. (Smiling(x) ∧ WearingHat(x))
∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.” True

False

True



  

“All P's are Q's”
translates as

∀x. (P(x) → Q(x))



  

Useful Intuition:
 

Universally-quantified statements are true 
unless there's a counterexample.

∀x. (P(x) → Q(x))

If x is a counterexample, it 
must have property P but 
not have property Q.



  

Good Pairings
● The ∀ quantifier usually is paired with →.

∀x. (P(x) → Q(x))
● The ∃ quantifier usually is paired with ∧.

∃x. (P(x) ∧ Q(x))
● In the case of ∀, the → connective prevents the 

statement from being false when speaking about some 
object you don't care about.

● In the case of ∃, the ∧ connective prevents the 
statement from being true when speaking about some 
object you don't care about.



  

Next Time
● First-Order Translations

● How do we translate from English into first-order logic?
● Quantifier Orderings

● How do you select the order of quantifiers in first-order 
logic formulas?

● Negating Formulas
● How do you mechanically determine the negation of a 

first-order formula?
● Expressing Uniqueness

● How do we say there’s just one object of a certain type?
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